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Abstract—In transfer learning, how to effectively transfer 

useful information from the source domain to the target domain is 
crucial. In this paper, we propose a novel transfer learning 
method for image classification, named manifold transfer 
learning via discriminant regression analysis (MTL-DRA), to 
transfer the local geometry structure information from the source 
domain to the target domain and ensure that the transform 
matrix is robust or sparse so that samples from different domains 
can be well combined. In MTL-DRA, we encode discriminant 
information of the source domain to the target domain by 
introducing between- and within-class graphs to preserve 
within-class similarity and reduce between-class similarity. With 
different norms as constraints, MTL-DRA overcomes the 
disturbance of noise and avoids negative transfer learning. To 
improve the robustness of MTL-DRA, we encode a nuclear norm 
constraint and propose robust MTL-DRA (RMTL-DRA). We 
analyzed the convergence and complexity of the two proposed 
methods. To verify the performance of the proposed methods, we 
conducted extensive experiments on five public image 
benchmarks. The experimental results show that the proposed 
methods outperform state-of-the-art transfer learning methods. 
 

Index Terms—Manifold, transfer learning, regression, 
discriminant, image classification.  
 

I. INTRODUCTION 
ITH the development of computer science, human lives, 
work, and entertainment have all become inseparable 

from the Internet, which generates a massive amount of 
complex data every day. By sorting out, analyzing, and mining 
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these data, we can obtain important information about the 
communication, interests, habits, and hobbies of users in order 
to make decisions. Data mining and machine learning 
technologies have been widely used to deal with massive data 
in different fields.  

Machine learning has been widely used in image recognition, 
speech recognition, clustering learning, and other fields [1]-[5]. 
However, traditional data analysis methods require sufficient 
labeled training data to obtain a better decision-making model, 
and then use this model to test and predict new data. The 
traditional data classification methods must satisfy the 
assumption that the training samples and test samples must be 
independent and identical distribution (IID). However, in 
practice, this assumption is always difficult to fulfill. For 
example, using a set of labeled childhood facial images to 
recognize their adult faces is a highly challenging task. 

Different from traditional machine learning methods, 
transfer learning does not need to satisfy the IID assumption 
and can migrate existing knowledge from the source domain to 
the target domain to solve a problem. Transfer learning uses the 
existing knowledge of different domains to solve different but 
related problems. For example, Peng et al. [6] proposed a 
transfer learning method named active transfer learning (ATL) 
to solve the negative transfer problem. Wang et al. [7] proposed 
a softly associative transfer learning method for cross-domain 
text classification, in which two nonnegative matrix 
tri-factorizations are combined in a joint optimization 
framework. Extreme learning machines (ELMs) often must 
satisfy the assumption that the training data and test data are 
from identical distributions, but this assumption is often 
violated. To solve the problem in ELMs, Chen et al. [8] 
proposed an ELM-based space learning method, domain space 
transfer ELM (DST-ELM), to deal with unsupervised domain 
adaptation problems. To address unsupervised domain 
adaptation problems, Gholami et al. [9] proposed a 
probabilistic latent variable model, in which the categorization 
task is tackled from different domains. Zhang et al. [10] 
proposed a guide subspace learning (GSL) method for 
unsupervised domain adaptation. To handle nonlinear domain 
shift, they extended GSL into a kernel case and proposed a 
nonlinear GSL (NGSL). To consider the class prior for domain 
adaptation, Wang et al. [11] proposed a class-specific 
reconstruction transfer learning (CRTL) method, which fully 
exploited the inter-class independency and intra-class 
dependency. To encode the data locality structure and avoid a 
negative transfer effect, Zhang et al. [12] proposed a manifold 
criterion guided transfer learning (MCTL) method. 
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The above methods neglect the discriminant information of 
the data. Many supervised methods have thus been proposed 
[13]-[17]. To overcome the limitations in designing and 
comparing different tasks in self-supervised learning, Noroozi 
et al. [13] presented a framework for self-supervised learning 
by transferring knowledge. To improve the weakly supervised 
detection for the object categorization task, Li et al. [14] 
proposed a more reasonable and robust objectness transfer 
method for mixed supervised detection. Han et al. [15] 
proposed a sparse multi-label transfer learning method to learn 
a sparse linear embedding space from the source domain. To 
predict image memorability, Jing et al. [16] proposed a novel 
framework called multiview transfer learning from external 
sources (MTLES) to enhance representation ability of visual 
features. Zhang et al. [17] proposed an  norm-based 
discriminative kernel transfer learning (DKTL) method for the 
recognition task that can learn discriminative subspaces 
simultaneously using the domain-class-consistency metric and 
the representation of the robust transfer model.  

However, the above-mentioned methods are sensitive to 
noise in the data and cannot directly divide the noise from the 
data. Recently, low-rank representation [18]-[20] has attracted 
much attention due to its global learning ability. Low-rank 
learning methods have global recovery ability and can remove 
noise directly [21]-[25]. For example, Jing et al. [21] proposed 
a transductive low-rank multi-view regression (TLRMVR) to 
boost the performance of micro-video popularity prediction. To 
better tackle micro-video multi-label classification tasks, Su et 
al. [22] proposed a low-rank regularized deep collaborative 
matrix factorization (LRDCMF) method. To enhance the 
robustness of preserving projection methods, Lu et al. [23] 
proposed a nuclear norm-based two-dimensional locality 
preserving projection (NN-2DLPP) for image classification. To 
predict the compatibility scores of fashion outfits, Jing et al. [24] 
proposed a transductive low-rank hypergraph regularizer 
multiple-representation learning (LHMRL) framework fashion 
compatibility prediction. To learn the discriminant low-rank 
representation and robust projecting subspace in a supervised 
manner, Li et al. [25] proposed a method that uses the least 
squares regularization. 

To transfer the local geometry structure information and 
ensure that the transform matrix is robust or sparse, we propose 

a novel transfer learning method, named manifold transfer 
learning via discriminant regression analysis (MTL-DRA) for 
image classification, in which we encode discriminant 
information of the source domain to the target domain by 
introducing between- and within-class graphs. With different 
norms as constraints, MTL-DRA overcomes the disturbance of 
the noise and avoids the negative transfer. We also encode a 
nuclear norm constraint and propose robust MTL-DRA 
(RMTL-DRA) to improve the robustness of MTL-DRA. The 
convergence and complexity analysis of the two proposed 
methods are given. To verify their performance, we conducted 
extensive experiments on five public image benchmarks and 
compared the proposed methods to state-of-the-art transfer 
learning methods. Fig. 1 shows the schematic of MTL-DRA. 

The main contributions of the paper are as follows. 
1) The MTL-DRA method is proposed for image 

classification. By introducing within- and between-class graphs 
from the source domain, MTL-DRA ensures that data samples 
from the same class are more compact and the data samples 
from different classes are far from each other as far as possible.  

2) MTL-DRA uses the  and  norms as a sparse 
constraint for the learned projection matrix and the assumed 
noise matrix, respectively. In this way, MTL-DRA can join 
sparsity together and enhance the robustness of the algorithm. 
Furthermore, without the disturbance of noise, MTL-DRA can 
effectively avoid negative transfer. 

3) Based on MTL-DRA, we use the nuclear norm instead of 
the  norm as a constraint of the projection matrix and 
propose a robust extension, robust MTL-DRA (RMTL-DRA).  

4) The convergence proof and time complexity of both the 
proposed methods are provided in detail.  

The rest of the paper is organized as follows. We present the 
motivation, objective function, optimization, convergence 
proof, and complexity analysis of the proposed MTL-DRA in 
Section II. The objective function, optimization, convergence, 
and complexity analysis of RMTL-DRA are given in Section 
III. Experiments and comparisons are reported in Section IV. 
Finally, the conclusion of the paper is given in Section V. 

II. MANIFOLD TRANSFER LEARNING VIA DISCRIMINANT 
REGRESSION ANALYSIS 

The motivation for proposing the manifold transfer learning 
via discriminant regression analysis (MTL-DRA) is first given. 

 
Fig. 1. Schematic of the proposed MTL-DRA method. MTL-DRA iteratively learns a latent subspace  that satisfies ,  is a coefficient 
matrix. In the learned subspace, data samples from the same class are more compact and the data samples from different classes are far from each other as far as 
possible. 

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on March 27,2021 at 15:53:23 UTC from IEEE Xplore.  Restrictions apply. 



1520-9210 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2020.3007340, IEEE
Transactions on Multimedia

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

3 

Then, the formulation, optimization, solution, convergence, 
and complexity analysis are discussed. 

A. Motivation 
Traditional machine learning methods often demand that the 

data are IID, which in many applications cannot be ensured. As 
transfer learning methods can migrate the information in the 
source domain to the target domain for certain tasks, IID data 
are not required. Thus, transfer learning has attracted much 
attention. However, for noisy data, how to avoid the influence 
of the noise and migrate effective and discriminative 
information is crucial for transfer learning methods. Even 
though many discriminant transfer learning methods have been 
proposed [13]-[17], these methods do not consider both the 
local geometry structure and global data structure. 

In this paper, to transfer the local geometry structure and 
local structure information of the data and ensure that the 
transform matrix is robust or sparse, we propose a novel 
transfer learning method, named manifold transfer learning via 
discriminant regression analysis (MTL-DRA) for image 
classification. By introducing between- and within-class graphs 
of the data in the source domain, we can transfer the 
discriminant information of the source domain to the target 
domain in MTL-DRA. To avoid transferring negative 
information to the target task, we use low-rank learning to 
remove the disturbance of the noise in the source domain data. 
To enhance the robustness of MTL-DRA, we use the nuclear 
norm instead of the 21L  norm as a constraint of the transform 
matrix and propose robust MTL-DRA (RMTL-DRA). The 
convergence and complexity of the two proposed methods are 
analyzed in detail. 

B. Formulation of the Problem 
In transfer learning, how to transfer useful knowledge from 

the source domain to the target domain is vital. Most transfer 
subspace methods neglect manifold discriminant information 
of the data, which can greatly improve the performance in 
image classification.  

Given the source domain data 1[ , , ]s sn m n
s s sX x x R ×= ∈ , 

where i
sx 1, si n=（ ）  are vector samples from the source 

domain, their corresponding label matrix 

1[ , , ] s

s

c n
nY y y R ×= ∈ , and the target domain data 

1[ , , ]t tn m n
t t tX x x R ×= ∈ , where i

tx 1, ti n=（ ）  are vector 
samples from the target domain; m  is the dimension of each 
sample. Assume that the target data can be reconstructed by the 
source data in a common subspace, that is: 

2

,
min || ||T T

t s FW Z
W X W X Z− ,                        (1) 

where m cW R ×∈  denotes a transformation matrix and 
s tn nZ R ×∈  is a reconstruction matrix.  

To ensure that the reconstruction coefficient matrix Z  has a 
block-wise structure, we rewrite (1) as  

,
min ( )
W Z

rank Z ,   s.t. T T
t sW X W X Z= .               (2) 

As the rank minimization problem in (2) is NP-hard, we relax it 
as  

*,
min || ||
W Z

Z ,   s.t. T T
t sW X W X Z= .                     (3) 

where *|| ||⋅  denotes the nuclear norm of a matrix. 
To alleviate the disturbance of the noise in data, we introduce 

a noise matrix E  with a sparse constraint in (3), and have 
* 1, ,

min || || + || ||
W Z E

Z Eα ,   s.t. T T
t sW X W X Z E= + .     (4) 

where α  is a parameter and 1|| ||⋅  denotes the 1L  norm of a 
matrix. 

To encode manifold information of the source data, we 
introduce the within class graph and between class graph as 
defined in the graph embedding formulation [26]. The 
definitions of the within class graph and between class graph 
are as follows: 

w w wL D S= − , b b bL D S= − ,                        (5) 
where wS  and bS  are defined as follows: 

1 1

2

( )  or ( )k k

T T
w i j

i i N j j N i

S w x w x
+ +∈ ∈

= −∑ ∑             (6) 

and 

2 2( , ) ( )  or ( , ) ( )k i k j

T T
b i j

i i j P c i j P c
S w x w x

∈ ∈

= −∑ ∑            (7) 

where 
1
( )kN i+  indicates the index set of the 1k  nearest 

neighbors of the sample ix  in the same class and 
2
( )kP c  is a set 

of data pairs that are the 2k  nearest pairs among the set 

{ }( , ), ,c ci j i jπ π∈ ∉ , where cπ  denotes the index set. wD  is 
the diagonal matrix whose entries are column sums of wS , and 

bD  is the diagonal matrix whose entries are column sums of bS . 
To maintain the geometric structure of the data, we can 
combine the intrinsic graph and the penalty graph by 
introducing the following regularization term, 

 ( ( ) )T T
s w b sTr W X L L X W− ,                           (8) 

where ( )Tr ⋅  denotes the trace of a matrix. 
Combining (4) and (8), we obtain  

* 1, ,
min || || + || || ( ( ) )T T

s w b sW Z E
Z E Tr W X L L X Wα b+ − , 

s.t. T T
t sW X W X Z E= + ,                     (9) 

where α  and b  are parameters. 
    To enhance the sparsity among rows of the transform matrix 
W  in (9), we use the 21L  norm as a sparse constraint of W  to 
obtain 

* 21 1, ,
min || || +|| || + || || ( ( ) )T T

s w b sW Z E
Z W E Tr W X L L X Wα b+ − , 

s.t. T T
t sW X W X Z E= + .                    (10) 

As a result, the objective function of MTL-DRA is defined 
as:  

* 21 1, ,

1min ( , , )+|| || || || + || ||
2
( ( ) )

sW Z E

T T
s w b s

W Y X Z W E

Tr W X L L X W

φ α

b

+

+ −
, 

s.t. T T
t sW X W X Z E= + ,                        (11) 

where ( , , )sW Y Xφ  is a regression discriminant subspace 
learning function. The definition of ( , , )sW Y Xφ  is  

2( , , )=|| ||T
s s FW Y X W X Y B Mφ − − W , s.t. 0M ≥ .         (12) 
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The definition of B  is given in (13), where ijB  is the i th row 
and j th column element. 

1,
1,

i
ij

y j
B

otherwise
+ =

= −
.                        (13) 

The first term in (11) performs regression learning to learn a 
subspace in which the distance between different classes is as 
large as possible. Thus, the discriminative ability is enhanced. 
With different norms as constraints, the three terms in 
MTL-DRA can transfer the sparsity and global learning ability 
to the target task and avoid negative transfer. The last term in 
(11) encodes a within-class graph and a between-class graph, 
which preserves the similarity of the data from the same class 
and suppresses the similarity of the data from different classes. 
By learning the transform matrix, MTL-DRL can transform the 
local geometry structure and global structure in the source 
domain to the target domain, ensure a compatible 
representation, and reduce discrepancies in the data. 

C. Optimization 
Since the optimization problem (11) is non convex, we solve 

it by fixing other variables to update one variable. We can 
convert (11) to 

1

2
1 * 21, , , ,

1

1min || || +|| || || ||
2

|| || ( ( ) )

T
s FW Z Z E M

T T
s w b s

W X Y B M Z W

E Tr W X L L X Wα b

− − +

+ + −

W

,            

s.t. T T
t sW X W X Z E= + , 1Z Z= , 0M ≥ .      (14) 

To solve (14), we introduce a property of the nuclear norm by 
the following Lemma. 
Lemma 1 [27] For any matrix 1

s tn nZ R ×∈ , the following holds: 

2 2
1 * 1,

1|| || min (|| || || || ) s.t. 
2 F FA D

Z A D Z AD= + =， .  
  

(15) 

If the rank of 1Z  is min( , )s tr n n≤ , then the minimum solution 
above is attained as a factor decomposition 1 s tn r r nZ A D× ×= . 

 Based on Lemma 1, an equivalent representation of (14) is: 

1

2 2 2

, , , , , ,

21 1

1 1min || || + (|| || || || )
2 2

|| || || || ( ( ) )

T
s F F FW Z Z A D E M

T T
s w b s

W X Y B M A D

W E Tr W X L L X Wα b

− − +

+ + + −

W

,      

s.t. T T
t sW X W X Z E= + , 1Z Z= , 1Z AD= , 0M ≥ .  (16) 

We solve (16) by minimizing the following augmented 
Lagrange multiplier function 

2 2 2
21 1

1

2
2 1 3 1

2 2
1 1

1 1|| || + (|| || || || ) || || || ||
2 2

( ( ) ) ( ( ))

( ( )) ( ( )) (|| ||
2

|| || || || )

T
s F F F

T T T T T
s w b s t s

T T T T
t s F

F F

L W X Y B M A D W E

Tr W X L L X W Tr M W X W X Z E

Tr M Z Z Tr M Z AD W X W X Z E

Z Z Z AD

α

b
µ

= − − + + +

+ − + − −

+ − + − + − −

+ − + −

W

, 

s.t. 0M ≥ ,                              (17) 
where 1M , 2M , and 3M  are Lagrange multipliers and 0µ >  
is a parameter. The main steps for solving (17) are as follows. 
Step 1 (Update W ): Fixed variables other than W , we have 

2

21
21

1min || || ( ( ) )
2

|| || || ||
2

T T T
s F s w b sW

T T
t s F

W X Y B M Tr W X L L X W

MW W X W X Z E

b

µ
µ

− − + −

+ + − − +

W

. (18) 

Let U Y B M= + W , ( ) T
s w b sR X L L X= − , t sQ X X Z= −  and 

1
1

MQ E
µ

= − . Setting to zero the partial derivative of (18) with 

respect to W  gives 

12 0T T T T T
s s sX X W X U R W QQ W QQ GWb µ µ− + + − + = ,(19) 

where ,; 21/ || ||ii iG W= , and ,;iW  denotes the i -th row of the 
matrix W . 

From (19), we have 
1

1( 2 ) ( )T T T T T
s s sW X X R QQ G X U QQb µ µ−= + + + + . (20) 

Step 2 (Update M ): Fixed other variables than M  in (17), we 
have 

2

0
min

FM
V B M

≥
− W ,                              (21) 

where T
sV W X Y= − . 

Considering the i th row and j th column element ijM  of 
M , we have 

2

0
min( )

ij
ij ij ijM

V B M
≥

− .                               (22) 

The optimal solution of ijM  in (22) is referred as discussed in 
[28], that is: 

max( ,0)ij ij ijM B V= .                            (23) 
Thus, the optimal solution of (20) with respect to M is 

max( ,0)M B V= W .                            (24) 
Step 3 (Update Z ): Fixed other variables except Z  in (17), we 
have 

2 21 2
1min || || || ||T T

t s F FZ

M MW X W X Z E Z Z
µ µ

− − + + − + .   (25) 

Let 1
2

T
t

MQ W X E
µ

= − + , by setting the partial derivative of 

(25) equal to zero, we have 

 

2
2 1

1 2
2 1

0

( ) ( )

T T T
s s s

T T T
s s s

MX WW X Z X WQ Z Z

MZ X WW X I X WQ Z

µ

µ
−

− + − + =

⇒ = + + −
.   (26) 

Step 4 (Update 1Z ): Fixed other variables except 1Z  in (17), 
we have  

1

2 232
1 1min || || || ||F FZ

MMZ Z Z AD
µ µ

− − + − + .         (27) 

By setting the partial derivative of (27) equal to zero, we have 
 

3 2 32
1 1

12 0 ( )
2

M M MMZ Z AD Z Z AD
µ µ µ

−
− − − + = ⇒ = + + .

(28) 
Step 5 (Update A ): Fixed other variables except A , we have 

2 23
1min || || || ||F FA

M
A Z ADµ

µ
+ − + .              (29) 

By setting the partial derivative of (29) equal to zero, we have  
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1 3
1

1 3

( ) 0

( ) ( )

T T

T T

A ADD Z M D

A Z M D I DD

µ µ

µ µ −

+ − + =

⇒ = + +
.           (30) 

Step 6 (Update D ): Fixed other variables except D , we have 
2 23

1min || || || ||F FD

M
D Z ADµ

µ
+ − + .               (31) 

By setting the partial derivative of (31) equal to zero, we have  

1 3
1

1 3

( ) 0

( ) ( )

T T

T T

D A AD A Z M

D I A A A Z M

µ µ

µ µ−

+ − + =

⇒ = + +
.            (32) 

Step 7 (Update E ): Fixed other variables except E  in (17), we 
have 

21
1min || || || ||

2
T T

t s FE

ME E W X W X Zµα
µ

+ − + − .      (33) 

We solve (33) by using the soft thresholding operator 
[ ] ( ) max( ,0)S x sign x xε ε= ⋅ −  [29]. The closed-form solution 

of (33) is as follows: 
1( )T T

t s
ME S W X W X Zα

µ µ
= − + .                    (34) 

Step 8 Multipliers  1 2 3, ,M M M  and iteration step-size ρ  
( 1ρ > ) are updated by  

1 1

2 2 1

3 3 1

max

( )
( )
( )

min( , )

T T
t sM M W X W X Z E

M M Z Z
M M Z AD

µ
µ
µ

µ ρµ µ

 = + − −
 = + −


= + −
 =

.          (35) 

The steps of MTL-DRA are given in Algorithm 1. 
Algorithm 1 MTL-DRA 
Input: sX , tX , Y , B , and parameters ,α b  in (11);  
Initialization: 1;M = 1 0;Z Z= = 0,E = , 

1 2 3 0M M M= = = ; 0ρ > . 
repeat 

1. Update W  by (20); 
2. Update M  by (24); 
3. Update Z  by (26); 
4. Update 1Z  by (28); 
5. Update A  by (30); 
6. Update D  by (32); 
7. Update E  by (34); 
8. Update Lagrange multipliers as follows: 

1 1 ( )T T
t sM M W X W X Z Eµ= + − − ; 

2 2 1( )M M Z Zµ= + − ; 

3 3 1( )M M Z ADµ= + − . 
9. Update µ  by min( , max )µ ρµ µ= . 
10. Update 1t t= +  
11. Obtain the optimal solution ( , ,W Z E ) 

Output: , ,W Z E  

D. Convergence and Complexity Analysis 
In this section, we analyze the convergence property of 

MTL-DRA. By showing that under mild conditions any limited 
point of the iteration sequence generated by MTL-DRA is a 
stationary point which satisfies the Karush-Kuhn-Tucker (KKT) 
conditions [30], we give a weak convergence proof of 

MTL-DRA. The necessary condition for a local optimal 
solution is that any converging point must satisfy the KKT 
conditions to ensure the behavior of MTL-DRA. The 
convergence proof of MTL-DRA is given in the Appendix. 

The major computations in Algorithm 1 are in steps 1, 3, 5, 
and 6. Steps 1 and 3 have the same complexity, which is at most 

3( )sO n . Steps 5 and 6 have the same computational complexity, 
which is at most 3( )O r . Because min( , )s tr n n≤ , the 
complexity of Algorithm 1 is at most 3( )sO tn , where t  is the 
number of iterations. 

III. ROBUST MANIFOLD TRANSFER LEARNING VIA 
DISCRIMINANT REGRESSION ANALYSIS 

The collected data from different domains may be corrupted 
by noise in real-world applications. To enhance the robustness 
of MTL-DRA, we use the nuclear norm as a constraint to the 
projective matrix in MTL-DRA and propose robust MTL-DRA 
(RMTL-DRA). In the next sub-sections, we describe the 
RMTL-DRA method. 

A. Formulation of the Problem 
Due to their global learning ability, nuclear norm-based 

methods have been applied in many fields, such as pattern 
recognition [32], [33] and computer vision [34], [35].  

MTL-DRA maps the source domain data and the target 
domain data to a common subspace. However, if the data are 
corrupted by noise, then the learning process of the projective 
matrix is disturbed, and the performance of MTL-DRA is 
degraded. To avoid this shortcoming and to enhance the 
robustness of MTL-DRA, we use the nuclear norm instead of 
the 21L  norm as a constraint of the transform matrix, and we 
propose robust manifold transfer learning via discriminant 
regression analysis (RMTL-DRA). The optimization objective 
function of RMTL-DRA is defined as: 

2
* *, , ,

1

1min || || +|| || +|| ||
2

|| || ( ( ) )

T
s FW Z E M

T T
s w b s

W X Y B M W Z

E Tr W X L L X Wα b

− −

+ + −

W

,                

s.t. T T
t sW X W X Z E= + , 0M ≥ .               (36) 

where α  and b  are parameters.  
Similar to MTL-DRA, RMTL-DRA aims to learn a 

compatible representation and reduce discrepancies in the data. 
If the second regularization term (i.e., 21|| ||W  in (11) and *|| ||W  
in (36)) in both the objective function of MTL-DRA and 
RMTL-DRA is removed, we can see that MTL-DRA and 
RMTL-DRA share the same framework. The main difference 
between MTL-DRA and RMTL-DRA is that: MTL-DRA uses 
the 21L  norm as a constraint of the projective matrix W , while 
RMTL-DRA uses the nuclear norm instead of the 21L  norm.  

B. Optimization and Solutions 
To solve the optimization problem (36), we introduce 

auxiliary variables and obtain 

1 1

2
1 * 1 *, , , , ,

1

1min || || +|| || +|| ||
2

|| || ( ( ) )

T
s FW W M Z Z E

T T
s w b s

W X Y B M Z W

E Tr W X L L X Wα b

− −

+ + −

W

, 
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s.t. T T
t sW X W X Z E= + , 1Z Z= , 1W W= , 0M ≥ .      (37) 

    According to Lemma 1, we can rewrite (37) as  

1 1

2 2 2

, , , , , , , , ,

2 2
1

1 1min || || + (|| || || || )
2 2

1 (|| || || || ) || || ( ( ) )
2

T
s F F FW W Z Z A D A D E M

T T
F F s w b s

W X Y B M A D

A D E Tr W X L L X Wα b

− − +

+ + + + −

 

W

 

, 

s.t. T T
t sW X W X Z E= + , 1Z Z= , 1Z AD= , 1W W= , 

1W AD=   , 0M ≥ .             (38) 
We solve (38) by minimizing the following augmented 
Lagrange multiplier function  

2 2 2

2 2
1

1 2 1 3 1

2
4 1 5 1

1 1|| || + (|| || || || )
2 2

1 (|| || || || ) || || ( ( ) )
2
( ( )) ( ( )) ( ( ))

( ( )) ( ( )) (|| ||
2

||

T
s F F F

T T
F F s w b s

T T T T T
t s

T T T T
t s F

L W X Y B M A D

A D E Tr W X L L X W

Tr M W X W X Z E Tr M Z Z Tr M Z AD

Tr M W W Tr M W AD W X W X Z E

Z

α b

µ

= − − +

+ + + + − +

− − + − + −

+ − + − + − −

+ −

W

 

 

2 2 2 2
1 1 1 1|| || || || || || || )F F F FZ Z AD W W W AD+ − + − + −  

, 

s.t. 0M ≥ .                                   (39) 
 where 1M , 2M , 3M , 4M  and 5M  are Lagrange multipliers 
and 0µ >  is a parameter. The main steps in solving (39) are as 
follows. 
Step 1 (Update W ): Fixed other variables except W  in (39), 
we have 

2

2 21 4
1

1min || || ( ( ) )
2

(|| || || || )
2

T T T
s F s w b sW

T T
t s F F

W X Y B M Tr W X L L X W

M MW X W X Z E W W

b

µ
µ µ

− − + −

+ − − + + − +

W

.  (40) 

Let 4
3 1

MQ W
µ

= − , setting the partial derivative of (40) with 

respect to W  equal to zero gives 

1 3( ) 2 0T T T T T
s sX X W U R W QQ W QQ W Qb µ µ µ µ− + + − + − =

. (41) 
Thus, we have 

1
1 3( 2 ) ( )T T T T T

s s sW X X R QQ I X U QQ Qb µ µ µ µ−= + + + + + . 
(42) 

Step 2 (Update M ): Fixed other variables except M  in (39), 
we have 

2

0
min || ||FM

V B M
≥

− W

.                       (43) 

The solution of (43) is the same as that of (24). 
Step 3 (Update 1W ): Fixed other variables except 1W  in (39), 
we have 

 
1

2 254
1 1min || || || ||F FW

MMW W W AD
µ µ

− − + − +  .            (44) 

Setting the partial derivative of 1W  in (44)) equal to zero, we 
have 

5 54 4
1 1

12 0 ( )
2

M MM MW W AD W W AD
µ µ µ µ

− − − + = ⇒ = + + −   . 

(45) 
Step 4 (Update Z ): Fixed other variables except Z  in (39), we 
have 

2 21 2
1min || || || ||T T

t s F FZ

M MW X W X Z E Z Z
µ µ

− − + + − + .  (46) 

The solution of (46) is the same as that of (26).  
Step 5 (Update 1Z ): Fixed other variables except 1Z  in (39), 
we have 

1

2 232
1 1min || || || ||F FZ

MMZ Z Z AD
µ µ

− − + − + .           (47) 

The solution of (47) is (28). 
Step 6 (Update A ): Fixed other variables except A  in (39), we 
have 

2 23
1min || || || ||F FA

M
A Z ADµ

µ
+ − + .                (48) 

The solution of (48) is (30). 
Step 7 (Update D ): Fixed other variables except D  in (39), 
we have 

2 23
1min || || || ||F FD

M
D Z ADµ

µ
+ − + .                  (49) 

The solution of (49) is (32).  
Step 8 (Update A ): Fixed other variables except A , we have 

2 25
1min || || || ||F FA

M
A W ADµ

µ
+ − +



   .                (50) 

The solution of (50) is the same as (29). Thus, we have 
1

1 5( ) ( )T TA W M D I DDµ µ −= + +    .            (51) 
Step 9 (Update D ): Fixed other variables except D , we have 

2 25
1min || || || ||F FD

M
D W ADµ

µ
+ − +



  .                (52) 

The solution of (52) is the same as that of (31). Thus, we have 

Algorithm 2 RMTL-DRA 
Input: sX , tX , Y , B , and parameters ,α b  in (37);  
Initialization: 1;M = 1 0;Z Z= = 0,E = , 

1 2 3 4 5 0M M M M M= = = = = ; 0ρ > . 
repeat 

1. Update W  by (42); 
2. Update M  by (24); 
3. Update 1W  by (45); 
4. Update Z  by (26); 
5. Update 1Z  by (28); 
6. Update A  by (30); 
7. Update D  by (32); 
8. Update A  by (51); 
9. Update D  by (53); 
10. Update E  by (34); 
11. Update Lagrange multipliers as follows: 

1 1 ( )T T
t sM M W X W X Z Eµ= + − − ; 

2 2 1( )M M Z Zµ= + − ; 

3 3 1( )M M Z ADµ= + − ; 

4 4 1( )M M W Wµ= + − ; 

5 5 1( )M M W ADµ= + −   . 
12. Update µ  by min( , max )µ ρµ µ= . 
13. Update 1t t= +  
14. Obtain the optimal solution ( , ,W Z E ) 

Output: , ,W Z E  
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1
1 5( ) ( )T TD I A A A W Mµ µ−= + +   .             (53) 

Step 10 (Update E ): Fixed other variables except E  in (39), 
we have 

21
1min || || || ||

2
T T

t s FE

ME E W X W X Zµα
µ

+ − + − .       (54) 

The solution of (54) is (34). 
Step 11 Multipliers 1 2 3 4 5, , , ,M M M M M  and iteration 
step-size ρ  ( 1ρ > ) are updated by  

1 1

2 2 1

3 3 1

4 4 1

5 5 1

max

( )
( )
( )
( )

( )
min( , )

T T
t sM M W X W X Z E

M M Z Z
M M Z AD
M M W W

M M W AD

µ
µ
µ
µ

µ
µ ρµ µ

 = + − −
 = + −
 = + −
 = + −
 = + −


=

 

.          (55) 

The concrete steps of RMTL-DRA are given in Algorithm 2. 

C. Convergence and Complexity Analysis 
The convergence of RMTL-DRA is similar to that of 

MTL-DRA. Due to space limitations, we do not provide the 
convergence proof for RMTL-DRA. 

The major computations in Algorithm 2 are in steps 1 and 4. 
These have the same complexity, which is at most 3( )sO n . 
Thus, the complexity of Algorithm 2 is 3( )sO tn , where t  is the 
number of iterations. Table I shows the actual runtime of our 
methods on different evaluations. 

IV. EXPERIMENTS 
To verify the performance of our proposed methods, we 

comprehensively compare our methods with state-of-the-art 
transfer learning methods on five visual benchmark databases 
including CMU PIE [36], COIL100 [37], MNIST [38]+USPS 
[39], Office [40] + Caltech-256 [41], and Office + Home [50]. 
Fig. 2 shows some images of these databases. 

A. Baselines and Setting 
In order to evaluate the superiority of our methods, we 

compare our methods with the following baselines: nearest 
neighbor (NN), principle component analysis (PCA) [42], 
transfer component analysis (TCA) [43], transfer subspace 
learning (TSL) [44], latent sparse domain transfer (LSDT) [45], 
joint distribution adaptation (JDA) [46], maximum 
independence domain adaptation (MIDA) [27], stacked robust 
adaptively regularized auto-regression (SRARAs) [47], and 
low-rank constrained latent domain adaptation depression 
recognition (LDADR) [48]. 

As there are no parameters in NN and PCA, we need not set 
any values. For other compared methods, we set the parameters 
as described in their related works. For classification, we used 
1-nearest neighbor classifier (NN) to classify the 
transformation results of the target domain data. The two 
parameters in both MTL-DRA and RMTL-DRA need to be 
selected. The two parameters in both methods are selected in 
{0.001, 0.01, 0.1, 1, 10, 100, 1000}. We evaluate the sensitivity 
of the parameters α  and b  in Fig. 3, which shows the 
classification accuracy versus Fig. 3. (a) α  with b  fixed and 
Fig. 3. (b) b  with α  fixed on three evaluations, i.e., P1 P2→ , 
A W→ , and C1 C2→ . 

In order to verify the classification performance of the 
proposed methods, we conducted extensive experiments on 
three recognition tasks, including face recognition, object 
classification, and handwritten digit recognition. The CMU PIE 
database was used to test the performance on face recognition 
and the COIL 100, Office, and Caltech-256 were used to test 
the performance on object classification. The USPS and 
MNIST databases were used to test the performance on 
handwritten digit recognition. Each experiment was repeated 
20 times and the average recognition rate is reported.  

          
(a) CMU PIE                        (b) COIL100                       (c) MNIST 

 
TABLE I. TIME CONSUMING (IN SECOND) OF OUR METHODS ON DIFFERENT EVALUATIONS. 

Evaluations A W→  M U→  C1 C2→  P1 P4→  A r Cl→  
MTL-DRA 5.32 10.52 87.64 23.15 53.16 

RMTL-DRA 6.15 12.61 95.12 27.61 62.42 

 
(a)                                                                                                                  (b) 

Fig. 3. Classification accuracy versus (a) α  with b  fixed and (b) b  with α  fixed on the P1→P2, A→W, and C1→C2 benchmarks. 
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(d) USPS                         (e) Office                          (f) Caltech-256 

Fig. 2. Some image examples of the databases. 

B. Experiments on the CMU PIE Database 
There are 41,368 face images from 68 subjects in the CMU 

PIE database [36]. All images were captured by 13 
synchronized cameras and 21 flashes with “pose”, 
“illumination”, and “expression” changes. The size of all 
images is 32 32× . In our experiment, we used five pose subsets 
of PIE to test the performance of each method. The five subsets 
are constructed by PIE1 (C05, left pose), PIE2 (C07, upward 

 

 
(a) (b) 

       
(c)                                                                                                                 (d) 

 
(e) 

Fig. 4. The classification accuracies of NN, PCA, TCA, TSL, LSDT, JDA, MIDA, SRARAs, LDADR, MTL-DRA, and RMTL-DRA on the CMU PIE database. 
(a) P1 is the source domain and P2-P5 are the target domain, respectively, (b) P2 is the source domain and P1, P3-P5 are the target domain, respectively, (c) P3 is 
the source domain and P1, P2, P4, and P5 are the target domain, respectively, (d) P4 is the source domain and P1-P3, and P5 are the target domain, respectively, (e) 
P5 is the source domain and P1-P4 are the target domain, respectively. 
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pose), PIE3 (C09, downward pose), PIE4 (C27, front pose), 
PIE5 (C29, right pose) and the face images of each subset with 
different expression and illumination changes. 
    In the five pose subsets, two different subsets were randomly 
selected as the source data and the target data, respectively. 
Thus, there were 20 cross-domain datasets: PIE1 (P1) vs PIE2 
(P2), PIE1 (P1) vs PIE3 (P3), PIE1 (P1) vs PIE4 (P4), PIE1 (P1) 
vs PIE5 (P5), 


, and PIE5 (P5) vs PIE4 (P4). In this way, the 

distributions of each cross-domain were significantly different. 
The experimental results with different cross domains are 
reported in Fig. 4. 
    From Fig. 4, we can see that MTL-DRA achieves the best 
adaptation performance on the CMU PIE database, which 
shows that transfer discriminant information and geometry 
structure information are important for transfer learning. 

C. Experiments on MNIST and USPS Databases 
In this section, we used the MNIST and USPS handwritten 

digit databases to conduct experiments to verify the 
performance of the proposed methods. There are 60,000 
training images and 10,000 test images in the MNIST database 
[38], and the size of all images is 28 28× . The USPS database 
[39] contains 9,298 labeled image, and the size of all images is 
16 16× . There are 10 digit categories in both databases. We 
used each digit class of the two databases to construct two 
recognition tasks. For the first task, the USPS database was 
used as the source domain and the MNIST database as the 
target domain, i.e., U M→ . Similarly, for the second task, the 
MNIST database was used as the source domain and the USPS 

TABLE II. THE EXPERIMENTAL RESULTS OF ALL THE COMPARED METHODS ON THE COIL100 DATABASE. 
Database NN PCA TCA TSL LSDT JDA MIDA SRARAs LDADR MTL-DRA RMTL-DRA 
C1 C2→  82.6 83.2 86.2 85.2 82.0 86.2 84.3 87.5 84.3 90.1 89.3 
C2 C1→  79.8 81.1 84.3 83.1 79.8 85.1 84.6 85.2 81.6 89.2 88.4 
Average 81.2 82.2 85.3 84.2 80.9 85.7 84.5 86.4 83.0 89.7 88.9 

TABLE III. THE EXPERIMENTAL RESULTS OF ALL THE COMPARED METHODS ON THE COIL100 DATABASE WITH OCCLUSIONS 
Database NN PCA TCA TSL LSDT JDA MIDA SRARAs LDADR MTL-DRA RMTL-DRA 
C1 C2→  71.6 64.2 76.3 76.2 72.2 77.3 75.6 78.1 68.3 79.1 81.2 
C2 C1→  69.5 62.1 73.3 74.2 71.1 75.4 74.5 76.5 67.5 78.2 80.3 
Average 70.6 63.2 74.8 75.2 71.7 76.4 75.1 77.3 67.9 78.7 80.8 

 
(a)                                                                                                                  (b) 

 
(c)                                                                                                                      (d) 

Fig. 5 The classification accuracies of NN, PCA, TCA, TSL, LSDT, JDA, MIDA, SRARAs, LDADR, MTL-DRA, and RMTL-DRA on the MNIST and USPS 
databases. (a) the MNIST databases is the source domain and the USPS database is the target domain (original images); b) the MNIST databases is the source 
domain and the USPS database is the target domain (all images with 10% pixel corruption);  (c) the USPS databases is the source domain and the MNIST database 
is the target domain (original images); (d) the USPS databases is the source domain and the MNIST database is the target domain (all images with 10% pixel 
corruption). 
 

1 2 3 4 5 6 7 8 9 10
30

40

50

60

70

80

90

100

Cl
as

sif
ica

tio
n 

ac
cu

ra
cy

NN

PCA

TCA

TSL

LSDT

JDA

MIDA

SRARAs

LDADR

MTL-DRA

RMTL-DRA

1 2 3 4 5 6 7 8 9 10
30

40

50

60

70

80

90

Cl
as

sif
ica

tio
n 

ac
cu

ra
cy

NN

PCA

TCA

TSL

LSDT

JDA

MIDA

SRARAs

LDADR

MTL-DRA

RMTL-DRA

1 2 3 4 5 6 7 8 9 10
40

50

60

70

80

90

100

Cl
as

sif
ica

tio
n 

ac
cu

ra
cy

NN

PCA

TCA

TSL

LSDT

JDA

MIDA

SRARAs

LDADR

MTL-DRA

RMTL-DRA

1 2 3 4 5 6 7 8 9 10
30

40

50

60

70

80

90

Cl
as

sif
ica

tio
n a

cc
ur

ac
y

NN

PCA

TCA

TSL

LSDT

JDA

MIDA

SRARAs

LDADR

MTL-DRA

RMTL-DRA

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on March 27,2021 at 15:53:23 UTC from IEEE Xplore.  Restrictions apply. 



1520-9210 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2020.3007340, IEEE
Transactions on Multimedia

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

10 

database as the target domain, i.e., M U→ . In the two 
recognition tasks, we used the original images and images with 
10% pixel corruption to carry out experiments. That is, data of 
the source and target domains are original samples or data from 
the source and target domain are all with 10% pixel corruption. 
Fig. 5 shows the experimental results of all the compared 
methods on the two databases. 

D. Experiments on Office and Caltech-256 Databases  
As a visual domain adaptation benchmark dataset, Office 

includes three different object categories, i.e., Amazon, DSLR, 
and Webcam. There are 4,652 images from 31 object categories 
in the database. The images of each category in the Amazon 
domain is 90 images on average and the average image number 
in DSLR or the Webcam domain is 30. There are 30,607 object 
images in Caltech-256 database. 

In our experiments, we selected four domains to conduct 
experiments, i.e., A (Amazon), W (Webcam), C (Caltech-256), 
and D (DSLR). The experimental design is as follows. Two 
different databases were randomly selected from the four 
databases as the source and target domains. Thus, we have 12 
cross domain, i.e., A W→ , A C→ , A D→ ,…, C D→ . 
The experimental results are reported in Fig. 6.  

From Fig. 6, we can see that our proposed methods obtain the 
best classification accuracy of the compared methods, which 

shows that our methods can migrate more useful information to 
the target domain for image classification. 

E. Experiments on the COIL100 Database 
In this section, we use the Columbia Object Image Library 

100 (COIL 100) [37] to test the performance of the proposed 
methods on object classification. There are 100 objects in the 
COIL 100 database, and each object has 72 images. In our 
experiments, we partitioned the database into two subsets 
COIL1 and COIL2. COIL1 includes all images taken in the 
poses of [0 ,85 ] [180 ,265 ]∪    , hence the number of all images 
is 3,600. COIL2 is constructed from all images with directions 
of [90 ,175 ] [270 ,355 ]∪    , hence the number of all images is 
again 3,600. The two subsets have relatively different 
distributions, and were used iteratively as the source and target 
data, i.e., COIL1 (source) vs COIL2 (target) ( C1 C2→ ) and 
COIL2 (source) vs COIL1 (target) ( C2 C1→ ). To verify the 
robustness of the proposed methods, we added black blocks to 
the images of the target data as noise to conduct experiments. 
The size of the added block was 10 10× . Fig. 7 shows some 
image examples with the block occlusion. Tables II and III 
show the experimental results on the COIL100 database. From 
the two tables, we can see that our methods outperform other 
compared methods.  

 

 
(a)                                                                                                                  (b) 

 
(c)                                                                                                                      (d) 

Fig. 6. The classification accuracies of NN, PCA, TCA, TSL, LSDT, JDA, MIDA, SRARAs, LDADR, MTL-DRA, and RMTL-DRA on the Office and 
Caltech-256 databases. (a) Amazon is the source domain and the Webcam, Caltech-256, and DSLR are the target domain, respectively, (b) the Webcam is the 
source domain and the Amazon, Caltech-256, and DSLR are the target domain, respectively, (c) Caltech-256 is the source domain and the Amazon, Webcam, and 
DSLR are the target domain, respectively, (d) DSLR is the source domain and the Amazon, Webcam, and Caltech-256 are the target domain, respectively. 
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Fig. 7. Image examples with the block occlusion from the COIL100 database. 

F. Comparison of Deep Learning  
    In this sub-section, we extend our methods to a deep case and 
conduct experiments to verify their performance. By using the 
features learned by convolutional neural network (CNN) [49], 
we given the deep extension of our methods, that are deep 
MTL-DRA and deep RMTL-DRA. To verify the performance 
of the deep extension of our methods, we conduct experiments 
on the Office + Home [50] benchmark. As a most recent 
cross-domain benchmark, Office + Home has been widely used 
in domain adaptation. There are four domains contain 15500 
images from 65 objects. Specifically, four domains are Art 
(artistic drawing objects), Clipart (images collected from 
www.clipart.com), Product (samples similar to Amazon almost 
with clean back- ground), and Real-World (object images taken 
with regular cameras). 

Some deep transfer methods were used as compared methods, 
including deep adaptation network (DAN) [51], deep hashing 
network (DHN) [50], deep low-rank coding (DLRC) [52], and 

reverse gradient (RevGrad) [53]. Fig. 8 is the experiments on 
the Office + Home benchmark. We can find that deep 
MTL-DRA and deep RMTL-DRA outperform better than other 
methods, which show that MTL-DRA and RMTL-DRA are 
effective for deep learning. 

G. Results and Discussion 
From the theory and experimental results, we can make the 

following observations. 
1) From Figs. 4-6 and Tables II and III, we can see that NN 

and PCA have lower recognition rates than other compared 
methods. This is mainly because the other compared transfer 
learning methods can learn more information than NN and 
PCA. 

2) Among all the transfer learning methods, we find that the 
recognition rate of TCA is lower than others. This is because 
TCA has the limitation that the difference in the conditional 
distributions is not explicitly reduced [46]. 

3) JDA performs better than TCA, TSL, and LSDT, mainly 
because JDA can match the conditional distributions by 
exploring sufficient statistics. 

4) In most cases, our method MTL-DRA has the best 
recognition rate. This is because MTL-DRA not only migrates 
the discrimination information from the source domain to the 

 

 
(a)                                                                                                                  (b) 

 
(c)                                                                                                                      (d) 

Fig. 8. The classification accuracies of DAN, DHN, DLRC, RevGrad, MTL-DRA, RMTL-DRA, Deep MTL-DRA, and Deep RMTL-DRA on the Office and 
Home databases. (a) Art is the source domain and Clipart, Product, and Real-World are the target domain, respectively, (b) Clipart is the source domain and Art, 
Product, and Real-World are the target domain, respectively, (c) Product is the source domain and Art, Clipart, and Real-World are the target domain, respectively, 
(d) Real-World is the source domain and Art, Clipart, and Product are the target domain, respectively. 
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target domain, but also enhances the robustness to noise. 
5) When the data are noisy, the classification performance of 

RMTL-DRA is the best. This verifies that encoding the nuclear 
norm as a constraint of the transform matrix can avoid negative 
transfers for image classification. 

V.  CONCLUSION 

What to transfer and how to transfer are two key problems 
for transfer learning. Especially, how to effectively transfer 
information from the source domain to the target domain is 
important. In this paper, to transfer the local geometry structure 
information and ensure the transform matrix is robust or sparse, 
we propose a novel transfer learning method, named manifold 
transfer learning via discriminant regression analysis 
(MTL-DRA) for image classification. In MTL-DRA, we 
encode discriminant information of the source domain to the 
target domain by introducing between- and within-class graphs. 
Furthermore, with different norms as constraints, MTL-DRA 
overcomes the disturbance of noise and avoids negative 
transfers. To further enhance the robustness of MTL-DRA, we 
encode a nuclear norm instead of the 21L  norm as a constraint, 
and propose robust MTL-DRA (RMTL-DRA). The 
optimization, solution, convergence and complexity analyses of 
the two proposed methods have been described in detail. 
Extensive experiments conducted on five public benchmarks 
verify the performance of the proposed methods. The 
experimental results show the effectiveness of the proposed 
methods for transfer learning. 

 APPENDIX 
Let us assume that MTL-DRA reaches a stationary point. 

The KKT conditions for (16) are derived as follows. 
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From the seventh relationship in (56), we can obtain that: 
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where / ( ) ( / ) | |t t tα µϑ µ α− ∂
 is applied element-wise to 

T T
t sW X W X Z− .  

Then we can obtain the following relationship [31]: 
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where ( , ) ( ) max(| | ,0)S x sign x xτ τ= − .  

Therefore, the KKT conditions are as follows: 
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Next, we prove the convergence of MTL-DRA to a point that 
satisfies the KKT conditions. 
Theorem 1: Let 1 1 2 3( , , , , , , , , , )W Z Z A D E M M Mθ µ

 and 
{ }j

jθ ∞  be generated by MTL-DRA. Assume that { }j
jθ ∞  is 

bounded, and 1lim { } 0j j
j θ θ+
→∞ − = . Then, any accumulation 

point of { }j
jθ ∞  satisfies the KKT conditions. Specifically, 

whenever { }j
jθ ∞  converges, it converges to a KKT point. 

Proof: We first obtain the Lagrange multipliers 1M , 2M , and 

3M  from Algorithm 1: 
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where iM + ( 1, 2,3)i =  is a next point of iM  in a sequence 

1{ }j
i jM ∞

= . If sequences of variables 1 1{ }j
jM ∞
= , 2 1{ }j

jM ∞
= , and 

3 1{ }j
jM ∞
=  converge to a stationary point, that is, 

1 1( ) 0M M+ − → , 2 2( ) 0M M+ − → , and 3 3( ) 0M M+ − → , then 
( ) 0,T T

t sW X W X Z E− − →  1( ) 0Z Z− → , and 

1( ) 0Z AD− → . Thus, the first three of the KKT conditions are 
satisfied. 

Next, we have the following equation from Algorithm 1 for 
the fourth KKT condition: 

1
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From the fourth condition in (59), we can derive 
1 ( 2 ) 0T T T T T

s s sX U QQ X X R QQ G Wµ b µ+ − + + + → , when 
( ) 0W W+ − → . 

Similar to the procedure used to verify the fourth condition, 
the fifth KKT condition in (59) can also be obtained: 
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    The sixth KKT condition is  

2 3
1 1 1

1 ( )
2

M M
Z Z Z AD Z

µ
+ −

− = + + − .         (63) 

We have 2 3
1

1 ( ) 0
2

M M
Z AD Z

µ
−

+ + − → , when 
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Similarly, the seventh KKT condition is  

1 3( )( ) ( )T T TA A I DD Z M D A ADDµ µ µ+ − + = + − −          (64) 
we have 1 3( ) 0T TZ M D A ADDµ µ+ − − →  as ( ) 0A A+ − → . 

The eighth KKT condition is 
1 3( )( ) ( )T T TI A A D D A Z M D A ADµ µ µ++ − = + − −       (65) 

When ( ) 0D D+ − → , we have 

1 3( ) 0T TA Z M D A ADµ µ+ − − → . 
Last, we obtain the following equation: 
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When ( ) 0E E+ − → , we obtain the last KKT condition. 
Since { }j

jθ ∞  is bounded by assumption, 1{ } jA A+ ∞
=  and 

1{ } jD D+ ∞
=  in (64) and (65) are bounded as well. Hence, 

1lim ( ) 0j j
j θ θ+
→∞ − =  implies that both sides of equations 

(60)-(66) tend to zero as j → ∞ . Therefore, the sequence 
{ }j

jθ ∞  asymptotically satisfies the KKT conditions for (16). □ 

REFERENCES 
 
[1] Q. Fu, Y. Luo, Y. Wen, D. Tao, Y. Li, and L. Duan, “Toward Intelligent 

Product Retrieval for TV-to-Online (T2O) Application: A Transfer 
Metric Learning Approach,” IEEE Trans. Multimedia, vol. 20, no. 8, pp. 
2114-2125, Aug. 2018. 

[2] L. Shao, F. Zhu, and X. Li, “Transfer Learning for Visual Categorizations: 
A Survey,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 5, pp. 
1019-1034, May. 2015. 

[3] Y. Xu, X. Fang, J. Wu, X. Li, and D. Zhang, “Discriminative Transfer 
Subspace Learning via Low-Rank and Sparse Representation,” IEEE 
Trans. Image Process., vol. 25, no. 2, pp. 850-863, Feb. 2016. 

[4] Y. Luo, Y. Wen, T. Liu, and D. Tao, “Transferring Knowledge Fragments 
for Learning Distance Metric from a Heterogeneous Domain,” IEEE Trans. 
Pattern Anal. Mach. Intell., vol. 41, no. 4, pp. 1013-1026, Apr. 2019. 

[5] P. Jing, Y. Su, L. Nie, and H. Gu, “Predicting Image Memorability 
Through Adaptive Transfer Learning From External Sources,” IEEE 
Trans. Multimedia, vol. 18, no. 4, pp. 775-788, Apr. 2016. 

[6] Z. Peng, W. Zhang, N. Han, X. Fang, P. Kang, and L. Teng, “Active 
Transfer Learning,” IEEE Trans. Circuits Syst. Video Technol., vol. 30, no. 
4, pp. 1022-1036, Apr. 2020. 

[7]  D. Wang, C. Lu, J. Wu, H. Liu, W. Zhang, F. Zhuang, and H. Zhang, 
“Softly Associative Transfer Learning for Cross-Domain Classification,” 
IEEE Trans. Cybern., DOI: 10.1109/TCYB.2019.2891577. 

[8] Y. Chen, S. Song, S. Li, L. Yang, and C. Wu, “Domain Space Transfer 
Extreme Learning Machine for Domain Adaptation,” IEEE Trans. Cybern., 
vol. 49, no. 5, pp. 1909-1922, May 2019. 

[9] B. Gholami, O. Rudovic, and V. Pavlovic, “PUnDA: Probabilistic 
Unsupervised Domain Adaptation for Knowledge Transfer Across Visual 
Categories,” in Proc. IEEE Int. Conf. Comput. Vis., 22-29, Oct. 2017. 

[10] L. Zhang, J. Fu, S. Wang, D. Zhang, Z. Dong, and C. Chen, “Guide 
Subspace Learning for Unsupervised Domain Adaptation,” IEEE Trans. 
Neural Netw. Learn. Syst., DOI: 10.1109/TNNLS.2019.2944455. 

[11] S. Wang, L. Zhang, W. Zuo, and B. Zhang, “Class-specific Reconstruction 
Transfer Learning for Visual Recognition Across Domains,” IEEE Trans. 
Image Process., vol. 29, pp. 2424-2438, 2020. 

[12] L. Zhang, S. Wang, G. Huang, W. Zuo, J. Yang, and D. Zhang, “Manifold 
Criterion Guided Transfer Learning via Intermediate Domain Generation,” 
IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 12, pp. 3759-3773, 
Dec. 2019. 

[13] M. Noroozi, A. Vinjimoor, P. Favaro, and H. Pirsiavash, “Boosting 
Self-Supervised Learning via Knowledge Transfer,” in Proc. IEEE/CVF 
Conf. Comput. Vis. Pattern Recognit., 18-23, Jun. 2018.  

[14] Y. Li, J. Zhang, K. Huang, and J. Zhang, “Mixed Supervised Object 
Detection with Robust Objectness Transfer,” IEEE Trans. Pattern Anal. 
Mach. Intell., vol. 41, no. 3, pp. 639-653, Mar. 2019. 

[15] Y. Han, F. Wu, Y. Zhuang, and X. He, “Multi-Label Transfer Learning 
with Sparse Representation,” IEEE Trans. Circuits Syst. Video Technol, 
vol. 20, no. 8, pp. 1110-1121, Aug. 2010. 

[16] P. Jing, Y. Su, L. Nie, and H. Gu, “Predicting Image Memorability 
Through Adaptive Transfer Learning From External Source,” IEEE Trans. 
Multimedia, vol. 19, no. 5, pp. 1050-1062, May. 2017. 

[17] L. Zhang, S. Jha, T. Liu, and G. Pei, “Discriminative Kernel Transfer 
Learning via L21-Norm Minimization,” in Proc. Int. Joint Conf. Neural 
Netw., 24-29, Jul. 2016. 

[18] Y. Chen, Z. Lai, W. Wong, L. Shen, and Q. Hu, “Low-Rank Linear 
Embedding for Image Recognition,” IEEE Trans. Multimedia, vol. 20, no. 
12, pp. 3212-3222, Dec. 2018. 

[19] Y. Lu, Z. Lai, X. Li, W. Wong, C. Yuan, and D. Zhang, “Low-Rank 2-D 
Neighborhood Preserving Projection for Enhanced Robust Image 
Representation,” IEEE Trans. Cybern., vol. 49, no. 5, pp. 1859-1872, May 
2019. 

[20] F. Nie, Z. Hu, and X. Li, “Matrix Completion Based on Non-Convex 
Low-Rank Approximation,” IEEE Trans. Image Process., vol. 28, no. 5, 
pp. 2378-2388, May 2019. 

[21] P. Jing, Y. Su, L. Nie, X. Bai, J. Liu, and M. Wang, “Low-Rank 
Multi-View Embedding Learning for Micro-Video Popularity Prediction,” 
IEEE Trans. Knowl. Data Eng., vol. 30, no. 8, pp. 1519-1532, Aug. 2018. 

[22] Y. Su, D. Hong, Y. Li, and P. Jing, “Low-Rank Regularized Deep 
Collaborative Matrix Factorization for Micro-video Multi-label 
Classification,” IEEE Signal Process. Lett., vol. 27, pp. 740-744, 2020. 

[23] Y. Lu, C. Yuan, Z. Lai, X. Li, W. Wong, and D. Zhang, “Nuclear 
Norm-Based 2DLPP for Image Classification,” IEEE Trans. Multimedia, 
vol. 19, no. 11, pp. 2391-2403, Nov. 2017. 

[24] P. Jing, S. Ye, L, Nie, J. Liu, and Y. Su, “Low-Rank Regularized 
Multi-Representation Learning for Fashion Compatibility Prediction,” 
IEEE Trans. Multimedia, vol. 22, no. 6, pp. 1555-1566, Jun. 2020. 

[25] P. Li, J. Yu, M Wang, L. Zhang, D. Cai, and X. Li, “Constrained 
Low-Rank Learning Using Least Squares-Based Regularization,” IEEE 
Trans. Cybern., vol. 47, no. 12, pp. 4250-4262, Dec. 2017. 

[26] S. Yan, D. Xu, B. Zhang, H. J. Zhang, Q. Yang, and S. Lin, “Graph 
Embedding and Extensions: A General Framework for Dimensionality 
Reduction,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 1, pp. 
40–51, Jan. 2007. 

[27] R. Mazumder, T. Hastie, and R. Tibshirani, “Spectral regularization 
algorithms for learning large incomplete matrices,” J. Mach. Learn. Res., 
vol. 11, pp. 2287–2322, Jan. 2010. 

[28] S. M. Xiang, F. P. Nie, G. F. Meng, C. H. Pan, and C. S. Zhang, 
“Discriminative least squares regressions for multiclass classification and 
feature selection,” IEEE Trans. Neural Netw. Learn. Syst., vol, 23, no. 11, 
pp. 1738-1754, Nov. 2012. 

[29] Z. Lin, M. Chen, L. Wu, and Y. Ma, “The augmented Lagrange multiplier 
method for exact recovery of corrupted low-rank matrices,” Math. 
Program., 2010. 

[30] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: 
Cambridge Univ. Press, 2004. 

[31]  E. Kim, M. Lee, and S. Oh “Elastic-net regularization of singular values 
for robust subspace learning,” in Proc. IEEE Conf. Comput. Vis. Pattern 
Recognit., Boston, MA, USA, 2015, pp. 915–923. 

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on March 27,2021 at 15:53:23 UTC from IEEE Xplore.  Restrictions apply. 



1520-9210 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2020.3007340, IEEE
Transactions on Multimedia

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

14 

[32] F. Zhang, J. Yang, J. Qian, and Y. Xu, “Nuclear Norm-Based 2-DPCA for 
Extracting Features From Images,” IEEE Trans. Neural Netw. Learn. Syst., 
vol. 26, no. 10, pp. 2247-2260, Oct. 2015. 

[33] Y. Lu, C. Yuan, Z. Lai, X. Li, D. Zhang, and W. Wong, “Horizontal and 
Vertical Nuclear Norm-Based 2DLDA for Image Representation,” IEEE 
Trans. Circuits Syst. Video Technol., vol. 29, no. 4, pp. 941-955, Apr. 
2019. 

[34] Z. Zhang, F. Li, M. Zhao, L. Zhang, and S. Yan, “Robust Neighborhood 
Preserving Projection by Nuclear/L21-Norm Regularization for Image 
Feature Extraction,” IEEE Trans. Image Process., vol. 26, no. 4, pp. 
1607-1622, Apr. 2017. 

[35] J. Yang, L. Luo, J. Qian, Y. Tai, F. Zhang, and Y. Xu, “Nuclear 
Norm-Based Matrix Regression with Applications to Face Recognition 
with Occlusion and Illumination Changes,” IEEE Trans. Pattern Anal. 
Mach. Intell., vol. 39, no. 1, pp. 156–171, Jan. 2017. 

[36] T. Sim, S. Baker, and M. Bsat, “The CMU pose, illumination, and 
expression database,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 
15, pp. 1615–1618, Dec. 2003. 

[37] S. A. Nene, S. K. Nayar, and H. Murase, “Columbia object image library 
(COIL-100),” Dept. Comput. Sci., Columbia Univ., New York, NY, USA, 
Rep. CUCS-006-96, 1996. 

[38] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based 
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11, 
pp. 2278–2324, Nov. 1998. 

[39]  A. Frank and A. Asuncion. (2010). UCI Machine Learning Repository. 
[Online]. Available: http://archive.ics.uci.edu/ml 

[40] L. Zhang and D. Zhang, “Robust Visual Knowledge Transfer via Extreme 
Learning Machine-Based Domain Adaptation,” IEEE Trans. Image 
Process., vol. 25, no. 10, pp. 4959-4973, Oct. 2016. 

[41] M. Shao, D. Kit, and Y. Fu, “Generalized transfer subspace learning 
through low-rank constraint,” Int. J. Comput. Vis., vol. 109, no. 1, pp. 74–
93, 2014. 

[42] P. N. Belhumeur, J. P. Hepanha, and D. Kriegman, “Eigenfaces vs. 
Fisherfaces: Recognition using class specific linear projection,” IEEE 
Trans. Pattern Anal. Mach. Intell., vol. 19, no. 7, pp. 711–720, Jul. 1997. 

[43] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation via 
transfer component analysis,” IEEE Trans. Neural Netw., vol. 22, no. 2, 
pp. 199–210, Feb. 2011. 

[44] S. Si, D. Tao, and B. Geng, “Bregman divergence-based regularization 
for transfer subspace learning,” IEEE Trans. Knowl. Data Eng., vol. 22, 
no. 7, pp. 929–942, Jul. 2010. 

[45] L. Zhang, W. Zuo, and D. Zhang, “LSDT: Latent Sparse Domain Transfer 
Learning for Visual Adaption,” IEEE Trans. Image Process., vol. 25, no. 
3, pp. 1177-1191, Mar. 2016. 

[46] M. Long, J. Wang, G. Ding, J. Sun, and P. S. Yu, “Transfer feature 
learning with joint distribution adaptation,” in Proc. IEEE Int. Conf. 
Comput. Vis., Dec. 2013, pp. 2200–2207. 

[47] W. Jiang, H. Gao, W. Lu, W. Liu, F. Chung, and H. Huang, “Stacked 
Robust Adaptively Regularized Auto-Regressions for Domain Adaptation,” 
IEEE Trans. Knowl. Data Eng., vol. 31, no. 3, pp. 561-574, Mar. 2019. 

[48] J. Tao, H. Xu, and J. Fu, “Low-Rank Constrained Latent Domain 
Adaptation Co-Regression for Robust Depression Recognition,” IEEE 
Access, vol. 7, pp. 145406-145425, 2019. 

[49] A. Krizhevsky, I. Sutskever, and G. E. Hintom, “ImageNet Classification 
with Deep Convolutional Neural Networks,” in Proc. Adv. Neural Inf. 
Process. Syst., 2012, pp. 1097-1105. 

[50] H. Venkateswara, J. Eusebio, S. Chakraborty, and S. Panchanathan, “Deep 
Hashing Network for Unsupervised Domain Adaptation,” in Proc. CVPR, 
2017, pp. 5018-5027. 

[51] M. Long, Y. Cao, J. Wang, and M. I. Jordan, “Learning Transferable 
Features with Deep Adaptation Networks,” in Proc. 32nd Int. Conf. Mach. 
Learn., 2015, pp. 97-105. 

[52] Z. Ding, M. Shao, and Y. Fu, “Deep Low-Rank Coding for Transfer 
Learning,” in Proc. 24th Int. Joint Conf. Artif. Intell., 2015, pp. 3453-3459. 

[53] Y. Ganin and V. Lempitsky, “Unsupervised Domain Adaptation by 
Backpropagation,” in Proc. 32nd Int. Conf. Mach. Learn., 2015, pp. 
1180-1189. 

 
 
 
 
 
 
 

Yuwu Lu received the B.S. degree in mathematics from 
Xingtai University, Xingtai, China, in 2008, the M.S. 
degree in mathematics from the Inner Mongolia 
University of Technology, Hohhot, China, in 2011, and 
the Ph.D. degree in computer science and technology 
from the Harbin Institute of Technology, Harbin, China, 
in 2015.  

He has been a Postdoctoral Fellow with the 
Tsinghua-CUHK Joint Research Center for Media 

Sciences, Technologies and Systems, Graduate School at Shenzhen, Tsinghua 
University, Shenzhen, China. He is an Assistant Professor with the College of 
Computer Science and Software Engineering, Shenzhen University, Shenzhen. 
He has authored more than 15 scientific papers in pattern recognition and 
computer vision. His current research interests include pattern recognition and 
machine learning.  
 
 

Wenjing Wang received the B.S. degree in software 
engineering from Henan University, Kai Feng, China, in 
2018. She is currently working toward the M.S. degree in 
the College of Computer Science and Software 
Engineering, Shenzhen University, Shenzhen, China. Her 
current research interests include transfer learning and 
low rank learning 
 

 
 

Chun Yuan is currently an Associate Professor in the 
Division of Information Science and Technology in 
Graduate school at Shenzhen, Tsinghua University. He 
received the M.S. and Ph.D. degrees from the 
Department of Computer Science and technology, 
Tsinghua University, Beijing, China, in 1999 and 2002, 
respectively. He once worked at the 
INRIA-Rocquencourt, Paris, France, as a Post-doc 
research fellow from 2003 to 2004. In 2002, he worked 

at Microsoft Research Asia, Beijing, China, as an intern. His research interests 
include computer vision, machine learning, video coding and processing, 
cryptography and digital rights management. 
 
 
Xuelong Li (M'02-SM'07-F'12) is a full professor with School of Computer 
Science and Center for OPTical IMagery Analysis and Learning (OPTIMAL), 
Northwestern Polytechnical University, Xi'an 710072, P.R. China. 
 
 

Zhihui Lai received the B.S. degree in mathematics from 
South China Normal University, M.S. degree from Jinan 
University, and the Ph.D. degree in pattern recognition 
and intelligence system from Nanjing University of 
Science and Technology (NUST), China, in 2002, 2007 
and 2011, respectively. He has been a Research Associate, 
Postdoctoral Fellow and Research Fellow at The Hong 
Kong Polytechnic University. His research interests 
include face recognition, image processing and 

content-based image retrieval, pattern recognition, compressive sense, human 
vision modelization and applications in the fields of intelligent robot research. 
He has published over 60 scientific articles. Now he is an associate editor of 
International Journal of Machine Learning and Cybernetics. For more 
information including all papers and related codes, the readers are referred to 
the website (http://www.scholat.com/laizhihui). 
 
 

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on March 27,2021 at 15:53:23 UTC from IEEE Xplore.  Restrictions apply. 


